Variable-Temperature Tip-Enhanced Raman Spectroscopy of Single-Molecule Fluctuations and Dynamics.
نویسندگان
چکیده
Structure, dynamics, and coupling involving single-molecules determine function in catalytic, electronic or biological systems. While vibrational spectroscopy provides insight into molecular structure, rapid fluctuations blur the molecular trajectory even in single-molecule spectroscopy, analogous to spatial averaging in measuring large ensembles. To gain insight into intramolecular coupling, substrate coupling, and dynamic processes, we use tip-enhanced Raman spectroscopy (TERS) at variable and cryogenic temperatures, to slow and control the motion of a single molecule. We resolve intrinsic line widths of individual normal modes, allowing detailed and quantitative investigation of the vibrational modes. From temperature dependent line narrowing and splitting, we quantify ultrafast vibrational dephasing, intramolecular coupling, and conformational heterogeneity. Through statistical correlation analysis of fluctuations of individual modes, we observe rotational motion and spectral fluctuations of the molecule. This work demonstrates single-molecule vibrational spectroscopy beyond chemical identification, opening the possibility for a complete picture of molecular motion ranging from femtoseconds to minutes.
منابع مشابه
The origin of relative intensity fluctuations in single-molecule tip-enhanced Raman spectroscopy.
An explanation of the relative intensity fluctuations observed in single-molecule Raman experiments is described utilizing both single-molecule tip-enhanced Raman spectroscopy and time-dependent density functional theory calculations. No correlation is observed in mode to mode intensity fluctuations indicating that the changes in mode intensities are completely independent. Theoretical calculat...
متن کاملTip-enhanced Raman spectroscopic detection of aptamers
Single molecule detection, sequencing and conformational mapping of aptamers are important for improving medical and biosensing technologies and for better understanding of biological processes at the molecular level. We obtain vibrational signals of single aptamers immobilized on gold substrates using tip-enhanced Raman spectroscopy (TERS). We compare topographic and optical signals and invest...
متن کاملRevealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy
The conductance of single-molecule junctions may be governed by the structure of the molecule in the gap or by the way it bonds with the leads, and the information contained in a Raman spectrum is ideal for examining both. Here we demonstrate that molecule-to-surface bonding may be characterized during electron transport by 'fishing-mode' tip-enhanced Raman spectroscopy (FM-TERS). This techniqu...
متن کاملOptical studies of single molecules at room temperature.
Recent developments in optical studies of single molecules at room temperature are reviewed, with an emphasis on the underlying principles and the potential of single-molecule experiments. Examples of single-molecule studies are given, including photophysics and photochemistry pertinent to single-molecule measurements, spectral fluctuations, Raman spectroscopy, diffusional motions, conformation...
متن کاملTip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution.
Our recently developed approach of UHV-tip-enhanced Raman spectroscopy permits us to acquire Raman spectra of a few single brilliant cresyl blue (BCB) molecules and even a single one adsorbed on a Au(111) surface. This is substantiated by simultaneously recorded STM images. Furthermore, because of the reduced photobleaching in UHV, the time frame for spectral acquisition is sufficiently extende...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 16 1 شماره
صفحات -
تاریخ انتشار 2016